Alberta Climate Information Service (ACIS): Meteorological Normals Definitions

Additional information

A more complete overview of ACIS please refer to our reference documents here: https://www.acis.alberta.ca/references.jsp

This document will explain:

1. Alberta Agriculture and Irrigation's Disclaimer
2. How hourly, daily and monthly observations are handled and aggregated.
3. Meteorological elements
4. The data flagging scheme
5. How normals are derived
6. How various meteorological derivatives are computed (e.g. Dew Point Temperature)

For an overview of the methodology and data sources used for generating the interpolation data set used for the calculation of long term normal please refer to:
https://www.acis.alberta.ca/docs/Methodology-and-Data-Sources-for-AGI-Interpolated-Data (1961Current) y2023 m11 d28.pdf

Station Normals

Climate normals are based on a 30-year period, which is considered by most agencies a long enough period of record to characterize a locations climate. They are typically updated every decade. For example, prior to 2020, climate normals were based on the 1981-2010 period. In the current decade (2020 to 2030), they are based on the 1991 to 2020 period. Thus for most of elements on ACIS, current climate normals reflect the 1991 to 2020 period. There are however a few exceptions:

1. Frost probabilities. These are based on the 1961 to last current full year. For example, in 2023 they are based on the 1961-2022 period. For calculating the likelihood of frost, this longer period is needed for statistical purposes.
2. Highest Maximum Air temperatures and lowest Minimum air temperatures are based on the 1961 to last current full year, just like the frost probabilities. These represent likely temperature extremes, but should not be confused with record temperatures. Using a longer period than the 30 -year normal provides a better estimate of temperature extremes.

Most the stations that are available through ACIS do not have a long enough period of record to develop 30 -year normals. For those that do, many have numerous missing observations within their period of record. This makes it difficult to compare normals between stations at different locations. Thus, the normals available here are estimated for each station, based on a gridded weather data product found here https://www.acis.alberta.ca/township-data-viewer.jsp .Additional details are available in the Reference Documents section of ACIS, entitled Methodology and Data Sources for Agriculture and Irrigation's Interpolated Data (1901-current). This data set was created by utilizing historical daily weather data for stations in Alberta as well as from neighboring provinces and the USA, and interpolating weather observations to a grid that uses township centers as grid points. Note, since the township grid does not exist in the Mountain Parks, stations within these areas do not have estimated normals.

The interpolation scheme used a combination of the hybrid method of inverse-distance weighting and nearest station assignments (Shen et al, 2001). Basing the interpolation on township centers yields a manageable database with enough detail and without undue redundancy.

Daily weather data for each day from January 1, 1901 to December 31 of the last full, current year, was interpolated to the center point of each of the 6900 townships in Alberta. The interpolation for any given day was based only on those stations that reported weather values for that day. For each township center on each day, the closest eight stations within a 60 km radius for precipitation and 200 km radius for other elements, were used to inverse distance weight the value for the township. If no stations had data for a particular element within the 60 or 200 km radius, then the nearest station was used regardless of its distance from the township center.

Air temperature, wind speed, wind direction, solar radiation and humidity were inverse distance weighted using a linear weighting scheme. Precipitation was inverse distance weighted using the cube of the inverse distance, with the inverse distance monthly totals redistributed proportionally, relative to the nearest station with a complete monthly record. This resulted in more weighting to the nearest station and for precipitation and the redistribution of the monthly totals, imposed a more natural precipitation pattern.

Note that for all the interpolated elements, it is extremely important to realize that the interpolation scheme tends to "smooth" the data and as such, only approximates the extreme occurrences at each station. In addition, since the interpolation looks out to 60 km for precipitation and 200 km for other elements, there tends to be more estimation error where local variability for a particular element is high. This is particularly true for areas near the mountains or foot hills and/or where local elevation changes rapidly or large bodies of water are present.

Precipitation Ave. (mm)

- Daily Option: This is the average daily precipitation accumulated for the period ranging from 1991 to 2020.
- Monthly Option: This is the average monthly precipitation based on the period ranging from 1991 to 2020.

Air Temp. Ave (${ }^{\circ} \mathrm{C}$)

- Daily Option: The average daily air temperatures for the period ranging from 1991 to 2020.
- Monthly Option: The monthly average daily air temperature for the period ranging from 1991 to 2020.

Air Temp Ave. Max. $\left({ }^{\circ} \mathrm{C}\right)$

- Daily Option: The average maximum daily air temperature for the period 1991 to 2020
- Monthly Option: The monthly average maximum daily air temperature for the period ranging from 1991 to 2020.

Air Temp. Highest Max $\left({ }^{\circ} \mathrm{C}\right)$

- Daily Option: The estimated maximum daily air temperature for the period 1961 to the last current full year. For example, in 2023, maximum temperatures will be based on the 1961 to 2022 period. Note that these are not "record" maximum station temperatures as these values were estimated using data from 1 or more nearby stations.
- Monthly Option: The estimated maximum daily air temperature that occurred during the month for the period 1961 to the last current full year. Note that these are not record maximum
station temperatures as these values were estimated using data from one or more nearby stations.

Air Temp Ave. Min (${ }^{\circ} \mathrm{C}$)

- Daily Option: The average minimum daily air temperature for the period 1961 to the last current full year
- Monthly Option: The average monthly minimum daily air temperature for the period ranging from 1961 to the last current full year

Air Temp. Lowest Min. $\left({ }^{\circ} \mathrm{C}\right)$

- Daily Option: The estimated minimum daily air temperature for the period 1961 to the last current full year. For example, in 2023, maximum temperatures will be based on the 1961 to 2022 period. Note that these are not "record" minimum station temperatures as these values were estimated using data from 1 or more nearby stations.
- Daily Option: The estimated minimum daily air temperature that occurred during the month for the period 1961 to the last current full year. Note that these are not record minimum station temperatures as these values were estimated using data from one or more nearby stations.

Growing Degree Days

Daily Option: Average daily accumulated growing degree days from the period 1991 to 2020
Monthly Option: Average monthly accumulated growing degree days from the period 1991 to 2020.
Growing degree days are a heat index that relates the development of plants, insects, and disease organisms to ambient air temperature. ACIS will compute them anytime between April 15 and October 15. Before April 15 and After October 15 they are assumed to be 0 . Users can set the start date for the calculation by selecting a start date and end the calculation by selecting an end date. If the weather station experiences frost, the average growing degree days will still continue to accumulate, but will be 0 on the frost date. This gives the user full control to over local frost conditions and does not force and end to the computation. In the event that a frost date is unknown, simply plot the minimum temperature along with the growing degree days and then manually determine the frost date and then readjust the end date accordingly. Growing Degree Days are provided for a variety of base temperatures, and they are computed on a daily basis using the following equations:

$$
\begin{aligned}
& \text { Growing Degree days }(0)=\left(\frac{\mathrm{Tmax}+\mathrm{Tmin}}{2}\right)-0 \text {, If negative }=0 \\
& \text { Growing Degreedays }(2)=\left(\frac{\mathrm{Tmax}+\mathrm{Tmin}}{2}\right)-2 \text {, If negative }=0 \\
& \text { Growing Degreedays }(5)=\left(\frac{\mathrm{Tmax}+\mathrm{Tmin}}{2}\right)-5 \text {, If negative }=0
\end{aligned}
$$

Where:
Tmax $=$ Maximum daily temperature $\left({ }^{\circ} \mathrm{C}\right)$
Tmin $=$ Minimum daily temperature $\left({ }^{\circ} \mathrm{C}\right)$

Corn Heat Units

Daily Option: Average daily accumulated corn heat units from the period 1991 to 2020 Monthly Option: Average monthly accumulated corn heat units from the period 1991 to 2020.

Corn heat units are similar to growing degree days and are temperature-based units that are related to the rate of development of corn. ACIS will compute them anytime between April 15 and October 15. Before April 15 and After October 15 they are assumed to be 0 . Users can set the start date for the calculation by selecting a start date and end the calculation by selecting an end date. If the weather station experiences frost, the average corn heat units will still continue to accumulate, but will be 0 on the frost date. This gives the user full control to over local frost conditions and does not force and end to the computation. In the event that a frost date is unknown, simply plot the minimum temperature along with the corn heat units and then manually determine the frost date and then readjust the end date accordingly. Note that for the each year during the period of record (1961-2014) corn heat units started accumulating after April 15 of each year, only after three consecutive days where average daily air temperatures are $\geq 12.8\left({ }^{\circ} \mathrm{C}\right)$ and they were zero prior to this day. They are computed on a daily basing using the following equations:

$$
\text { Corn Heat Units }=\frac{C H U X+C H U Y}{2}
$$

Where:

```
CHUX \(=1.8 \times(\) Tmin -4.4\()\), If negative \(=0\)
CHUX \(=3.33 \times(\operatorname{Tmax}-10)-0.084 \times(\operatorname{Tmax}-10)^{2}\), If negative \(=0\)
Tmax \(=\) Maximum Daily temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
Tmin \(=\) Minimum daily temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
```

after the selected start date, corn heat units will begin accumulating only after three consecutive days where average daily air temperatures are $\geq 12.8\left({ }^{\circ} \mathrm{C}\right)$ and they are zero prior to this day.

Frost Probabilities

Daily option: The estimated probability of getting a frost after a given date in the spring or before given date in the fall.

The frost probabilities presented here are based upon interpolated station data from the 1961 to the last current full year. For example in 2023, frost probabilities will be based on the 1961 to 2022 period. It is important to realize that they are generalizations based on interpolated station data. Local variations will exist and be largely dependent on landscape characteristics that affect air drainage and day time heating. Therefore, the frost probabilities presented here should only be used as a general guide.
Frost probabilities can be generated for various frost thresholds ranging from $0{ }^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}$. For example, in the spring, after what date is there a 50% chance of receiving frost? Using Figure 1, we can see that for Busby AGCM this date is May $15^{\text {th }}$. Similarly, in the fall, on what date is there a 25% chance that frost will have occurred? Using Figure 1, we can see that for Busby AGCM that date is September $9^{\text {th }}$.

Figure 1. Frost $\left(0^{\circ} \mathrm{C}\right)$ probability curve for Busby AGCM

